BAe Nimrod AEW 3

Nimrod AEW 3

The unmitigated disaster of the Nimrod AEW 3 programme probably stands comparison with any of the other 'great' shambolic defence procurement fiascos, that have caused such embarrassment to the MOD and various governments over the years. It was certainly one of the most expensive and the final bill has probably never been accurately calculated, but even the most conservative estimate of 1 billion takes little account of the damage caused to the reputations of the companies involved. This overview will briefly describe the lengthy gestation of the project, some of the main problems that were encountered and why the whole sorry shambles was finally brought to an end.

Nimrod AEW 3

The Falklands War of 1982 came virtually out of the blue and the eventual success of the Task Force was, as usual, based on the ability of British servicemen and women to 'make do' with many items of inferior, outdated equipment, such as one of the flagships, HMS Hermes, even down to basic items such as boots that leaked and fell apart. The defence review of 1965 had started the process of ending the era of the RN's large aircraft carriers, each capable of operating a fixed-wing AEW aircraft, such as the Fairey Gannet AEW3. Consequently, by 1982 the RN lacked any intrinsic AEW capability to send with the Falklands Task Force - in theory it should have been provided by the RAF with the Nimrod AEW 3, but this programme was in an almost total shambles. The net result was the loss of a number of ships to air attack and the death of many brave men whose lives might well have been saved if an AEW aircraft had been available. Quite how it would have been possible to sustain a land-based AEW aircraft in orbit over the Task Force during daylight hours, when it took virtually the whole of the AAR resources of the RAF to get one Vulcan there and back is another matter, either way it certainly proves the need for the RN to have a carrier based AEW capability, if they are expected to conduct blue-water operations.

Nimrod AEW 3

When Grumman and General Electric began development of the E-2 Hawkeye in the early 1960's, the capability of this carrier based AEW radar, operating at UHF wavelengths with an Airborne Moving Target Indicator (ATMI), was set to revolutionise AEW development. British industry and the MOD watched the development in the USA with some trepidation, realising that unless they set about defining a replacement for the antiquated Gannet, they would be out of the AEW market forever. Various design ideas were considered, including a Buccaneer with two sideways facing antennas in the bomb-bay and an HS-125 with a mushroom radome mounted above the fuselage - however, this is where the problems began. The E-2 Hawkeye is a very clever design, which compresses 2 crew, 3 systems operators and a considerable amount of electronic equipment into an airframe small enough to operate from a carrier whilst carrying a rotordome - an achievement no other country has been able to match. Size became a crucial factor in the British design proposals when it was decided that a rotordome mounted radar which met the design specification, could not be carried on an HS-125 sized aircraft and attention switched to a new design with a Fore and Aft Scanner System (FASS).

Nimrod AEW 3

By 1965 British industry was keen to develop a Frequency-Modulated Intermittent Continuous-Wave (FMICW) radar using elliptical or circular inverted-cassegrain antennas. The properties of these types of radar do not allow them to operate effectively near propellers, so the proposed AEW aircraft had to be jet powered. Again size became a factor and it was soon apparent that the large antennas necessary to meet the range criteria, together the associated equipment and crew, could only be carried by a fairly large aircraft - certainly one too big to fit on a carrier, which was fortuitous as the Labour government had by then decided to get rid of them. Various options were considered for a FASS installation including a jet-powered version of the HS 748 Andover and the BAC 111, before engineers finally settled on an adaptation of the proposed HS.801 anti-submarine version of the Comet - the Nimrod.

Nimrod AEW 3

Eventually, UK scientists deciding to ditch the FMICW radar in favour of the pulse-Doppler radar and funding for the system was finally approved in 1972. Various options for the Nimrod airframe were considered; the first option involved mounting the E-2C AN/APS-125 radar and associated avionics above and inside the airframe. The second option was to use the AN/APS-125 radar with British avionics. The third option was to mount the AN/APA-171 radome and antenna on the Nimrod, with Britain supplying the radar transmitter, receiver and avionics. The fourth option was an all British radar and avionics system, with some American components, and a FASS with pulse-Dopper processing operating in the S-band. Although this option provided the greatest input from British industry, it also carried the greatest technical risk and the alarm bells should already have been ringing. But, as in so many UK defence fiasco's over the years, political decisions, namely keeping BAe & GEC workers employed and retaining AEW radar technical expertise in the UK, overcame the many doubters and outweighed common sense.

By the end of 1974, instead of purchasing an off-the-shelf system with a proven track record, the Labour government predictably decided on the fourth option, the Nimrod AEW 3, accepting whatever extra cost and technical risk that involved. At the time the Labour government also considered that joining a possible NATO purchase of the Boeing E-3A was just too politically complicated, expensive and subject to unknown delay - which is rather ironic considering how things eventually turned out. At this point it was widely reported that the RAF was in favour of a dedicated UK purchase of the E-3A, rather than the Nimrod, but the cost, together with the potential loss of jobs in some marginal Labour seats, was always going to mitigate against this option.

Comet 4 with AWACS nose

A modified Comet 4 fitted with a forward scanner was used for a series of trials to prove the basic concept of the system. Then on 31 Mar 77, the government gave the go ahead for Hawker Siddeley (soon to be merged with the British Aircraft Corporation to form British Aerospace - BAe) who would supply the airframe and Marconi-Elliot, (soon to be renamed Marconi Avionics) who would supply the mission avionics, to build and deliver 11 Nimrod AEW 3 aircraft. The airframes comprised 8 that were built, but never delivered to the RAF and 3 that became available when 203 Sqn was disbanded after the RAF withdrew from Malta.

Nimrod AEW 3 interior

The 1976 operating specification of the planned Nimrod AEW 3, ASR 400, was to say the least very demanding. It called for exceptional detection capabilities of both sea vessels and aircraft over land and sea, far in excess of the E-2C and with the ability to automatically initiate and track up to 400 targets. Six operators consoles (four radar, one communications and one for ESM) were planned and, although this is double the number of the E-2C, it is much less than 9 originally planned for the E-3A, which also had considerable empty space for additional consoles. The Nimrod AEW 3 was planned to carry a comprehensive communications fit, which would also allow combined operations with NATO E-3A's. However, space was always at a premium - the Nimrod was planned to be about half the weight of an E-3A, but three times that of the E-2C and this sheer lack of space eventually became one of the major problems. In 1977 ASR 400 was re-drafted to ASR 400 Revision 1, yet it was never clearly established to which standard the production aircraft were to be produced to - a classic example of shifting goalposts and lack of communication between the contractor and the customer.

Nimrod AEW 3

Despite the chaotic project management of the earlier TSR-2, which contributed considerably to its eventual cancellation, similar problems occurred in the project management of the Nimrod AEW 3. The normal procedure for a project of this size was for the RAF Operational Requirements (OR) branch to lead the project through the feasibility stage, with the operational aspects stated by the Assistant Chief of the Air Staff (ACAS) and financial input from the Air Plans branch. The Ministry of Defence (Procurement Executive) Controller of Aircraft (MOD(PE) CA) had responsibility for project definition and development, usually under as assistant director. Reporting to the MOD(PE) CA was the Director of Military Aircraft Projects, who had a Nimrod Director and an assistant Nimrod director, and it was this individual was actually responsible for the AEW 3. Generally, the individual in this appointment was a wg cdr, considerably down the 'food chain' in the MOD and with little real clout.

However, responsibility for the electronic system in the AEW 3 lay elsewhere, namely with the Director of Air Weapons and Electronic Systems, whose Assistant Director Electronics, Radar (Airborne) was actually responsible for this vital equipment. Ultimate financial authority rested with the Minister of State for Defence, and although representatives of the various parties with a 'finger in the AEW 3 pie' met as necessary, only at the quarterly review boards Nimrod AEW 3 nose radar was an overall view of the entire project undertaken. Essentially, the prime contractors were left to sort out the physical integration of the various systems, with minimal input from the MOD or RAF. As usual, service personnel remained in their appointments for around 2 years and were then posted, just as they had developed a sound grasp of the technicalities of the task. MOD civil servants involved in the project usually had considerable technical expertise in specific areas, but lacked much understanding of the operational aspects and some displayed poor management skills. This muddled project management system was in stark contrast to that employed by the USAF, who usually appointed a high ranking, ambitious officer, as the Project Manager and this individual then had ultimate responsibility for over-seeing every aspect of a project and remained in post until entry into service.

Nimrod AEW 3

The first structurally complete aircraft was rolled-out on 30 Mar 80 and flew on 16 Jul - this was followed in Jan 81 by the second production aircraft, which was planned to develop the and the radar. A Joint Trials Unit (JTU) was established at RAF Waddington to help develop the Mission System Avionics (MSA) and in no time at all serious problems with the MSA were identified. The heart of the MSA was the GEC 4080M computer that received data from the radar scanners, the Loral ARI-18240/1 ESM system, the Cossor Jubilee Guardsman IFF equipment and the two Ferranti FIN 1012 inertial navigation systems. The computer processed this mass of data and then displayed it on the multi function display and control consoles (MDCC) where the operators communicated to the various command organisations and operational units through the Automatic Management of Radio and Intercom Systems (AMRICS). Independently, these systems worked correctly, but after they were integrated in 1980 serious problems emerged. The fundamental problem was that the computer simply was not powerful enough. The GEC 4080M computer had a storage capacity of 1 megabyte (Yes ONE!), which could be augmented via a data-bus with an additional 1.4 megabytes, giving a grand total of just 2.4 megabytes total storage capacity, small even by the standards of the time and particularly so given the task it had to perform. The computer quickly showed it was too slow for the task and soon became overloaded, at which point track continuity suffered, this then led to track duplication, which slowly increased and further overloaded the system.

Nimrod AEW 3

Another major problem was the sheer amount of heat generated by all the electronic systems when operating the radar and other systems at full power. This was a real problem, because the fuel system was used as a 'heat-sink' and to be able to dissipate the heat generated when the MSA and radar operated at full power, the fuel tanks needed to be at least half full. Essentially, like so many other MOD procurement disasters, the Nimrod AEW 3 suffered from requirements that changed, inadequate project management and, in an attempt to save money, the 'bodged' adaptation of an elderly airframe, rather than shelling out on a new airframe designed exactly for the purpose.

Nimrod AEW 3

Although the Nimrod AEW project struggled on, the MSA could rarely be made to work consistently. Under test by the MOD(PE) in 1984 the MSA, whilst falling short of the ASR 400 requirements, worked well and showed promise, but it was very unreliable and its performance changed from sortie to sortie. During the first 8 sorties only 3 hours of full system operation was achieved. Detection range was 30% below the specified distance, tracking continuity was erratic with numerous false plots, all-round surveillance was poor and did not provide the anticipated twin hemispheric coverage and last, but not least, maritime detection resolution was poor.

All the time the costs mounted, with little sign that this grotesque white elephant would ever work as designed. Finally, common sense prevailed and in 1986 the axe finally fell, bringing the curtain down on the entire farce which ended up costing the taxpayer somewhere in the region of 1 billion. In 1988 a Boeing proposal for the supply of 7 E-3D Sentry's was accepted and the aircraft eventually entered service in 1991.

Nimrod AEW 3

To fill in the 'AEW gap' after the Gannet retired and before the Nimrod AEW 3 entered service, in 1971, the RAF was forced to convert 12 obsolete Shackleton MR2 aircraft to carry the obsolescent TPS-20 radar removed from the Gannets. Entering service with 8 Sqn at RAF Lossiemouth in 1972, the Shackleton was cold, incredibly noisy and thoroughly uncomfortable for the unfortunate crew - high-tone deafness after a couple of tours was routine. It was often said that one of the nicest sounds in the world was a Shackleton getting airborne, because that meant you weren't on board. Unpressurised, the Shackleton was limited to around 10,000ft and usually operated much lower. The TPS-20 radar had a range of only 150km and had no height finding capability, so in reality there was little point in flying high anyway. However, because of the Nimrod AEW 3 fiasco, five of these obsolete, antiquated, uncomfortable aircraft had to soldier on for 20 years until the E-3D entered service in 1991 - such is the price of political interference, poor planning and inept project management.

Nimrod AEW 3

Despite all the problems with the Nimrod AEW 3, GEC Marconi continued development of the radar system, now named ARGUS, and the Chinese expressed an interest in mounting it on an Il-76 Candid. However, it appears the Chinese saw sense, as they eventually tried to purchase the Phalcon phased array AEW system from Israel, until this was blocked by the USA. The Chinese are now believed to be developing an AEW system using an electronically scanned phased array radar mounted above the fuselage of the Y-8X Cub. The system the Chinese are developing appears very similar to the Swedish SAAB 340 Argus, which given the Chinese track record of stealing Western technology, may be more than just a coincidence.

Nimrod AEW 3

So what can be learnt from the Nimrod AEW fiasco? Well, firstly an AEW airframe needs to be large enough to carry the equipment and crew, ideally with something in reserve - attempting to squeeze everything into what was essentially an airframe designed in the 1940's, was bound to lead to problems. Secondly, effective long range AEW radar technology is highly complex, difficult to develop and needs to be updated on a regular basis to remain effective. Unless you have bottomless pockets, it's safer and less expensive in the long run to buy proven American equipment off the shelf.

Amazingly, the collective memory of the Nimrod AEW farce seems to have been completely ignored when it was decided to replace the Nimrod MR2 with the Nimrod MRA4. Astonishingly many of the same mistakes of attempting to once again adapt an airframe designed in the 1940's, have been repeated for the second time - but more on the MRA4 farce at a later date and I only hope the final bill this time around is less than 1 billion squandered on the Nimrod AEW 3.